NFPA Welcomes New Member: Young Powertech

Manufacturer, importer, and distributor of HYDRAULIC COMPONENTS: motors, pumps, rotary actuators, valves, MECHANICAL COMPONENTS: Planetary, helical, parallel shaft, shaft mounted, worm, and ELECTRICAL COMPONENTS; electric motors, controllers, variable speed, brake-motors and more.

Young Powertech Inc.
3060 Plaza Dr.
Garnet Valley PA 19060
610-558-0760
https://youngpowertech.com/

OCR – Carlo Pecorari, Chairman
carlo@youngpowertech.com

Recent Posts

Update to Regional Demand Estimates Report Now Available

The U.S. Fluid Power Regional Demand Estimates Report has been updated with 2023 estimates and is now available for download. This Excel-based report is prepared for NFPA by Oxford Economics and profiles the geographic distribution of fluid power products to end-use industries by state, including fluid power sales dollars, fluid power sales percentage, and number of…

Read More about Update to Regional Demand Estimates Report Now Available

Hear from an NCAT Student Engaged in NFPA Workforce Programs

We’re excited to share a new testimonial video from David Castro Lastor, a junior mechanical engineering student at North Carolina Agricultural and Technical State University and president of the university’s Fluid Power Club. In his video, David shares how participating in NFPA programs has shaped his academic and personal growth. Through his leadership in the…

Read More about Hear from an NCAT Student Engaged in NFPA Workforce Programs

New Episode of Fluid Power Forum: Advanced Modeling Techniques and Performance Comparisons of Electrohydraulic Systems

Today, our guest is Bruno Dupuis. Bruno is a Corporate Accounts Manager at Famic Technologies Inc., the company behind the development of Automation Studio™, a circuit design and simulation software for fluid power, electrical, robotics, process control and automation projects. He presented at NFPA’s Hydraulics Conference co-located at the 2024 iVT EXPO back in August.…

Read More about New Episode of Fluid Power Forum: Advanced Modeling Techniques and Performance Comparisons of Electrohydraulic Systems