INTERNATIONAL STANDARD

Third edition 2018-05

Hydraulic fluid power — Cylinders - Dimensions and tolerances of housings for single-acting piston and rod seals in reciprocating applications

Transmissions hydrauliques — Vérins — Dimensions et tolérances des logements de joints d'étanchéité pour pistons et tiges de piston à simple effet dans les applications à mouvement alternatif

Licensed to: Hade, Downloaded: 202 Single user licence on by pying and networking prohibited Reference number ISO 5597:2018(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Licensed to: Hade, Allison Downloaded: 2023-04-18 Single user licence only, copying and networking prohibited © ISO 2018 – All rights reserved

Page

Contents

Forew	ordi	iv				
Introd	uction	v				
1	Scope	1				
2	Normative references 1					
3	Terms and definitions	1				
4	Symbols	2				
5	Seal housings 5.1 General 5.2 Axial length 5.3 Radial depth	2 2 3 3				
6	Dimensions and tolerances6.1Piston seal housing dimensions6.2Rod seal housing dimensions6.3Radial seal space tolerances6.4Housing length	3 3 3 4				
7	Extrusion gap	4				
8	Surface roughness 8.1 General 8.2 Sliding and static sealing surfaces	4 4 4				
9	Lead-in chamfer	5				
10	Identification statement (reference to this document)	6				
Biblio	graphy1	6				

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 131, *Fluid power systems*, Subcommittee SC 7, *Sealing devices*.

This third edition cancels and replaces the second edition (ISO 5597:2010) which has been technically revised to ensure consistency with ISO 3320.

The main changes compared to the previous edition are:

- Seal housing sizes for a 60 mm diameter cylinder bore added to <u>Table 3</u>;
- 400 mm and 450 mm diameter rods added to <u>Table 5</u>.
- <u>Table 1</u> has been modified to indicate that, for some seal housings, the axial lengths (seal groove lengths) are too short for the surface roughness to be measured with five sampling lengths.

Introduction

In hydraulic fluid power systems, power is transmitted and controlled through a liquid under pressure within an enclosed circuit. Sealing devices are used to contain the pressurized fluid with components having elements with linear motion, i.e. hydraulic cylinders. These sealing devices are used with both cylinder rod and piston seal housings.

This document is one of a series of standards covering dimensions and tolerances of housings.

Licensed to: Hade, Allison Downloaded: 2023-04-18 Single user licence only, copying and networking prohibited

Hydraulic fluid power — Cylinders — Dimensions and tolerances of housings for single-acting piston and rod seals in reciprocating applications

1 Scope

This document establishes the preferred range of nominal dimensions and associated tolerances for a series of hydraulic cylinder rod and piston seal housings for reciprocating applications in the following range of dimensions:

- for cylinders of 16 mm to 500 mm;
- for rods of 6 mm to 450 mm.

An additional range of seal housings is detailed in this document to meet the reduced envelope requirements of the 160 bar (16 MPa)¹) compact series of ISO 6020-2; these smaller section seals require stricter piston rod and cylinder bore tolerances. The range of dimensions is as follows:

- cylinders of 25 mm to 200 mm;
- rods of 12 mm to 140 mm.

This document does not give details of seal design, since the manner of construction of seals varies with each manufacturer. The design and material of the seal and any incorporated anti-extrusion components are determined by conditions such as temperature and pressure.

This document only applies to the dimensional criteria of products manufactured in conformity with this document; it does not apply to their functional characteristics.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4287:1997, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters

ISO 5598, Fluid power systems and components — Vocabulary

ISO 6020-2, Hydraulic fluid power — Mounting dimensions for single rod cylinders, 16 MPa (160 bar) series — Part 2: Compact series

3 Terms and definitions

For the purposes of this document, the definitions given in ISO 5598 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>

ISO 5597:2018(E)

4 Symbols

Symbols used in this document are as follows:

- *a* roughness of the side surface of the seal housing
- *b* roughness of the static pressure mating surface of the seal housing
- *C* axial length of the lead-in chamfer
- *C*0 reference material ratio level (see ISO 4287:1997, 4.5.4)
- *D* outside diameter (bore diameter) of the seal housing
- *d* inside diameter (rod diameter) of the seal housing
- d_3 clearance diameter of the piston
- *d*⁴ clearance diameter of the rod seal housing
- d_5 clearance diameter of the rod
- *e* roughness of dynamic pressure mating surface
- *f* surface roughness of lead-in chamfer
- *L* axial length (seal groove length) of the seal housing
- r radius
- $R\delta c$ profile section height difference (see ISO 4287:1997, 4.5.3)
- S $\frac{D-d}{2}$ radial depth (cross-section) of the seal housing

W, X reference surface

V, Y maximum run-out tolerance

5 Seal housings

5.1 General

5.1.1 Illustrated examples of typical hydraulic cylinder rod and piston seal housings covered by this document are given in Figures 1 to $\frac{4}{4}$.

NOTE These figures are diagrammatic only and do not represent recommendations of a particular housing design.

5.1.2 All sharp edges and burrs shall be removed from corners of supporting surfaces and rounded, although it should be borne in mind that these surfaces are required to provide maximum support against extrusion.

5.1.3 The seal manufacturer shall be consulted for details of housing design that are not specified in this document.

5.2 Axial length

The short axial length, *L*, as given in <u>Tables 3</u> and <u>5</u>, shall be adopted only after consultation with the manufacturer.

Consultation with the manufacturer is recommended when making the appropriate selection from the available choices.

NOTE This document includes a choice of axial length for every nominal piston and rod diameter, the exception being cylinders conforming to ISO 6020-2 in which case only one length is provided (see <u>Clause 1</u> and <u>Tables 4</u> and <u>6</u>).

5.3 Radial depth

The larger radial depth (cross-section) of the seal housing, *S*, shall be chosen where higher stresses or wider tolerances are involved.

Consultation with the manufacturer is recommended when making the appropriate selection from the available choices.

NOTE This document includes an alternative seal housing radial depth (cross-section) for most piston and rod diameters, the exception being at the upper and lower extremities of the diameter range as well as cylinder seal housings conforming to ISO 6020-2, in which case only one radial depth is provided.

6 Dimensions and tolerances

NOTE See ISO 3320.

6.1 Piston seal housing dimensions

6.1.1 Illustrated examples of piston seal housing dimensions are given in <u>Figures 1</u> and <u>2</u>.

6.1.2 Piston seal housing dimensions (except in the case of cylinders conforming to ISO 6020-2) shall be selected from <u>Table 3</u>.

6.1.3 Piston seal housing dimensions for use with cylinders conforming to ISO 6020-2 shall be selected from Table 4.

6.2 Rod seal housing dimensions

6.2.1 Illustrated examples of rod seal housing dimensions are given in <u>Figures 3</u> and <u>4</u>.

6.2.2 Rod seal housing dimensions (except in the case of cylinders conforming to ISO 6020-2) shall be selected from <u>Table 5</u>.

6.2.3 Rod seal housing dimensions for use with cylinders conforming to ISO 6020-2 shall be selected from <u>Table 6</u>.

6.3 Radial seal space tolerances

6.3.1 Reference shall be made to <u>Table 7</u> for radial seal space tolerances.

6.3.2 References shall be made to NOTES 1 and 2 of <u>Table 7</u> for the formulae for calculating tolerances on *d* (see <u>Figures 1</u> and <u>2</u>) and *D* (see <u>Figures 3</u> and <u>4</u>).

NOTE 1 The equations and values shown in Table 7, when used in conjunction with ISO 286-2 limits of D H9 and d_3 f8 (for the piston case) or d f8 and d_5 H9 (for the rod case), in most cases result in tolerances within the span of d h10 and D H10, respectively.

NOTE 2 If alternative limits to those given in NOTE 1 are selected for D and d_3 (for the piston case) or d and d_5 (for the rod case), then the use of the formulae will maintain the necessary radial seal space limits, i.e. any relaxation of tolerance on one housing diameter will be compensated by a tighter tolerance on the other diameter.

6.4 Housing length

A tolerance of ${}^{+0,25}_{0}$ mm shall be used on the length of the housing.

7 Extrusion gap

The extrusion gap is determined by the diameter $(d_4 \text{ or } d_3)$ of the adjacent metal components behind the seal. It is recommended that details concerning d_3 (see Figures 1 and 2) and d_4 (see Figures 3 and 4) be subject to consultations between the housing designer and seal manufacturer.

NOTE 1 Maximum value for the extrusion gap is achieved when the piston or piston rod is in contact with one side of the cylinder or bearing, respectively.

NOTE 2 The extrusion gap for piston seals is further widened by the expansion of the cylinder due to internal pressure.

8 Surface roughness

8.1 General

The surface roughness of the seal housing and any mating part has a significant impact on the life and sealing performance of the seal.

Where surface roughness measurements are taken, it is recommended that instruments complying with ISO 3274, including an electric wave filter, be used.

8.2 Sliding and static sealing surfaces

8.2.1 Unless otherwise agreed the roughness values shall be in accordance with <u>Table 1</u>.

8.2.2 Unless otherwise agreed, the material ratio *Rmr* of housing surfaces that are in mating contact with the seal should be between 50 % and 80 % at a profile section level ($R\delta c$) of 25 % of *Rz*, from a reference level, *C*0, of 5 % *Rmr* (in accordance with ISO 4287:1997, 4.5.4).

8.2.3 For some seal designs, a minimum surface roughness of 0,1 μm *Ra* may be required for the sliding sealing surface as the surface otherwise may be too smooth to provide adequate lubrication for the seal.

8.2.4 Exceptional service conditions may necessitate the selection of other grades of surface roughness, in which case they should be subject to agreement between manufacturer and user.

8.2.5 All surfaces against which a seal operates should be free from chatter marks and scores along the operating axis of the seal.

		Surface	roughness va	lues ^{b, c, d}		
Radial depth of seal housing	Dynamic pressure	Static press surf	sure mating ace ^e	Side	Chamfer	Minimum required measuring length mm (5 times single
s mm	surfacee	Axial	ength	a	f	sampling length
	е	1	- -	u		off)
		$L \leq 5,6$	L > 5,6			,
2 5		Ra4 1,6				
5,5		Rz4 6,3		Ra2 1,6	Ra 4	
4		Ra4 1,6		Rz2 6,3	visual	
4	<i>Ra</i> 0,4	Rz4 6,3			inspection	E C
r.	<i>Rz</i> 1,6		<i>Ra</i> 1,6	Ra4 1,6	OF	5,0
Э			<i>Rz</i> 6,3	Rz4 6,3	<i>RZ</i> 16	
. 75		_		<i>Ra</i> 1,6	visual	
≥ 7,5				Rz 6,3	mspection	

Table 1 — Surface roughness requirements for piston and rod housings^a

Dimensions in micrometres (µm) unless otherwise noted

^a Indication of surface roughness according to ISO 1302.

^b See also <u>Figures 1</u> to <u>4</u>. See ISO 13715 for design of edges and undefined shapes.

^c The descriptions of *Ra*4 1,6 or *Rz*4 6,3 do not describe a surface roughness of *Ra* 41,6 or *Rz* 46,3. According to ISO 1302 and ISO 4288, they show four sampling lengths and the roughness does not exceed 1,6 μ m for *Ra* and 6,3 μ m for *Rz*.

A value of Ra 1,6 or Rz 6,3 can only be measured if the length to be measured is 5,6 mm or longer.

d Special applications may require different surface roughness values.

e Visual surface imperfections are not allowed on surfaces *b* and *e* (see ISO 8785).

9 Lead-in chamfer

9.1 Reference shall be made to <u>Figures 1</u> to <u>4</u> for the location of the lead-in chamfer, *C*.

9.2 The chamfer shall make an angle of between 20° and 30° with the axis.

9.3 The length of the chamfer shall not be less than that given in <u>Table 2</u>.

Table 2 — Lead-in chamfer

Dimensions in millimetres

Radial depth of seal housing, S	3,5	4	5	7,5	10	12,5	15	20
Minimum axial length of lead in chamfer, <i>C</i>	2	2	2,5	4	5	6,5	7,5	10

10 Identification statement (reference to this document)

It is recommended that manufacturers who have chosen to conform to this document use the following statement in test reports, catalogues and sales literature:

"Dimensions and tolerances for hydraulic cylinder rod and piston seal housings are selected in accordance with ISO 5597, *Hydraulic fluid power—Cylinders—Dimensions and tolerances of housings for single-acting piston and rod seals in reciprocating applications.*"

Key

- 1 bore
- 2 piston
- 3 seal-retaining plate
- a rounded and burr-free
- NOTE 1 Maximum run-out tolerance Y = 0,05.
- NOTE 2 See <u>Table 1</u> for values of *a*, *b*, *e* and *f*.
- NOTE 3 See <u>Table 2</u> for values of *C*.
- NOTE 4 See <u>Table 3</u> for values of *d*, *D*, *S*, *L* and *r*.

Figure 1 — Example of piston seal housing (except in the case of cylinders conforming to ISO 6020-2 — see Figure 2)

ISO 5597:2018(E)

Dimensions in millimetres

Key

- 1 bore
- 2 piston
- a rounded and burr-free
- NOTE 1 Maximum run-out tolerance Y = 0,05.
- NOTE 2 See <u>Table 1</u> for values of *a*, *b*, *e* and *f*.
- NOTE 3 See <u>Table 2</u> for values of *C*.
- NOTE 4 See <u>Table 4</u> for values of *d*, *D*, *S*, *L* and *r*.

Figure 2 — Example of piston seal housing for use with cylinders conforming to ISO 6020-2

Dama d'amatana	Dedieldersth	In side diameter		Axial length ^b		
Bore diameter ^a	Radial depth	Inside diameter			r	
D	S	d	short	medium	long	maximum
16		8				
20	4 12	5	6,3	_		
25		17				
25	5	15	6,3	8	16	
22	4	24	5	6,3	_	
32	5	22	6,3	8	16	
40	4	32	5	6,3	_	
40	5	30	6,3	8	16	0,4
FO	5	40	6,3	8	16	
50	7,5	35	9,5	12,5	25	
(0	5	50	6,3	8	16	
00	7,5	45	9,5	12,5	25	
()	5	53	6,3	8	16	
03	7,5	48	9,5	12,5	25	
00	7,5	65	9,5	12,5	25	
00	10	60	12,5	16	32	0,6
0.0	7,5	75	9,5	12,5	25	0,4
90	10	70	12,5	16	32	0,6
100	7,5	85	9,5	12,5	25	0,4
100	10	80	12,5	16	32	0,6
110	7,5	95	9,5	12,5	25	0,4
110	10	90	12,5	16	32	0,6
105	10	105	12,5	16	32	0,6
125	12,5	100	16	20	40	0,8
140	10	120	12,5	16	32	0,6
140	12,5	115	16	20	40	0,8
1(0	10	140	12,5	16	32	0,6
100	12,5	135	16	20	40	0,8
Bore diameters in accordance with ISO 3320						

Table 3 — Nominal dimensions for piston seal housing (except in the case of cylinders conforming to ISO 6020-2 — see Table 4)

Dimensions in millimetres

ordance with ISO 3320.

b The application of the axial lengths specified in <u>Tables 3</u> and <u>5</u> (short, medium and long) depends upon the respective working conditions.

Bore diameter ^a	Radial denth	Inside diameter		Axial length ^b		r
D	c c	d		L		,
D	3	a	short	medium	long	maximum
100	10	160	12,5	16	32	0,6
100	12,5	155	16	20	40	
200	12,5	175	16	20	40	
200	15	170	20	25	50	
220	12,5	195	16	20	40	
220	15	190	20	25	50	0.0
250	12,5	225	16	20	40	υ,δ
250		220				
280	45	250	20	25	FO	
320	15	290	20	25	50	
360	0 330					
400		360				
450	20	410	25	32	63	1
500		460				
^a Bore diameters in accordance with ISO 3320.						

 Table 3 (continued)

^b The application of the axial lengths specified in <u>Tables 3</u> and <u>5</u> (short, medium and long) depends upon the respective working conditions. b

Table 4 — Nominal dimensions for piston seal housings for use with cylinders conforming to ISO 6020-2

Dimensions in millimetres

Bore diameter ^a	Radial depth	Inside diameter	Axial length	rb	
D	S	d	L	maximum	
25	2 5	18	F 6		
32	5,5	25	5,0		
40		32			
50	4	42	6,3	- 0,5	
63		55			
80	F	70	7 5		
100	5	90	7,5		
125		110			
160	7,5	145	10,6		
200		185			
^a Bore diameters in accordance with ISO 6020-2.					
^b This specific dimension permits the use of tools conforming to ISO 883.					

Dimensions in millimetres

Key

- 1 rod
- 2 gland
- 3 seal-retaining plate
- a rounded and burr-free
- NOTE 1 Maximum run-out tolerance Y = 0.05.
- NOTE 2 Maximum run-out tolerance V = 0.05.
- NOTE 3 See <u>Table 1</u> for values of *a*, *b*, *e* and *f*.
- NOTE 4 See <u>Table 2</u> for values of *C*.
- NOTE 5 See <u>Table 5</u> for values of *d*, *D*, *S*, *L* and *r*.

Figure 3 — Example of rod seal housing (except in the case of cylinders conforming to ISO 6020-2 — see Figure 4)

ISO 5597:2018(E)

Dimensions in millimetres

Кеу

- 1 rod
- 2 gland
- ^a rounded and burr-free
- NOTE 1 Maximum run-out tolerance Y = 0.05.
- NOTE 2 See <u>Table 1</u> for values of *a*, *b*, *e* and *f*.
- NOTE 3 See <u>Table 2</u> for values of *C*.
- NOTE 4 See <u>Table 6</u> for values of *d*, *D*, *S*, *L* and *r*.

Figure 4 — Example of rod seal housing for use with cylinders conforming to ISO 6020-2

Table 5 — Nominal dimensions for rod seal housings (except in the case of cylinders conforming
to ISO 6020-2 — see Table 6)

Dimensions in millimetres

Rod diameter a	Radial denth	Outside diameter		Axial length ^b		r
d	S	D -	L			mauimum
			short	medium	long	IIIaxIIIIuIII
6		14				
8	4	16	5	6,3	14,5	
10		18				
10	5	20	_	8	16	
12	4	20	5	6,3	14,5	
12	5	22		8	16	
14	4	22	5	6,3	14,5	
14	5	24		8	16	
16	4	24	5	6,3	14,5	
10	5	26	—	8	16	
10	4	26	5	6,3	14,5	
10	5	28	—	8	16	
20	4	28	5	6,3	14,5	
20	5	30	_	8	16	-
22	4	30	5	6,3	14,5	
22	5	32	_	8	16	0,4
25	4	33	5	6,3	14,5	
25	5	35		8	16	
20	5	38	6,3	8	16	
28	7,5	43		12,5	25	
22	5	42	6,3	8	16	
32	7,5	47	_	12,5	25	
26	5	46	6,3	8	16	-
30	7,5	51	_	12,5	25	
40	5	50	6,3	8	16	-
40	7,5	55	_	12,5	25	
45	5	55	6,3	8	16	-
45	7,5	60		12,5	25	
50	5	60	6,3	8	16	
50		65		12,5	25	
F (7,5	71	9,5	12,5	25	-
56	10	76	_	16	32	0,6
	7,5	78	9,5	12,5	25	0,4
63	10	83		16	32	0,6
	7,5	85	9,5	12,5	25	0,4
70	10	90	_	16	32	0,6
Rod diameters in accordance with ISO 3320. The application of the axial lengths specified in <u>Tables 3</u> and <u>5</u> (short, medium and long) depends upon the respective						

working conditions.

Ded diameters	Dediel donth	Outoido diamotor		Axial length ^b			
	Raulai ueptii	outside diameter		r			
a	5	D	short	medium	long	maximum	
20	7,5	95	9,5	12,5	25	0,4	
80	10	100	_	16	32	0,6	
0.0	7,5	105	9,5	12,5	25	0,4	
90	10	110		16	32	0,6	
100	10	120	12,5	16	32	0,6	
100	12,5	125		20	40	0,8	
110	10	130	12,5	16	32	0,6	
110	12,5	135		20	40	0,8	
105	10	145	12,5	16	32	0,6	
125	12,5	150		20	40	0,8	
140	10	160	12,5	16	32	0,6	
140	12,5	165		20	40		
1(0	12,5	185	16	20	40		
100	15	190		25	50		
190	12,5	205	16	20	40		
100	15	210		25	50		
200	12,5	225	16	20	40	0,8	
200		230					
220	1 Г	250		25	50		
250	15	280	20	25	50		
280		310					
320		360					
360	20	400	25	22	(2)	1	
400	20	440	25	32	63		
450		490					
a Rod diameters in	accordance with IS) 3320					

Table 5 (continued)

^b The application of the axial lengths specified in <u>Tables 3</u> and <u>5</u> (short, medium and long) depends upon the respective working conditions.

Table 6 — Nominal dimensions for rod seal housings for use with cylinders conforming toISO 6020-2

Dimensions in millimetres

Rod diameter ^a	Radial depth	Inside diameter	Axial length	rb	
d	S	D	L	maximum	
12		19			
14	2 5	21	F C		
18	3,5	25	5,0		
22		29			
28		36			
36	4	44	6,3	0,5	
45		53			
56		66			
70	5	80	7,5		
90		100			
110	7 5	125	10.6		
140 7,5		155	10,0		
a Rod diameters in accordance with ISO 6020-2.					
^o This specific dimension permits the use of tools conforming to ISO 883.					

Radial depth						
S						
Nominal	Tolerance					
2 ⊑	+0,15					
5,5	-0,05					
4	+0,15					
	-0,05					
5	+0,15					
	-0,05					
75	+0,20					
<i>ר</i> ,7	-0,10					
10	+0,25					
10	-0,10					
12 5	+0,30					
12,5	-0,15					
15	+0,35					
15	-0,20					
20	+0,40					
20	-0,20					

Table 7 — Seal housing radial depth (cross-section) — Tolerances

Dimensions in millimetres

NOTE 1 For pistons:

Calculate the tolerances on the seal housing inside diameter, d (see Figures 1 and 2), in accordance with Formulae (1) and (2):

$d_{\min} = 2D_{\max} - d_{3,\min} - 2S_{\max}$	(1))
---	-----	---

 $d_{\max} = d_{3,\min} - 2S_{\min} \tag{2}$

NOTE 2 For rods:

Calculate the tolerances on the seal housing outside diameter, D (see Figures 3 and 4), in accordance with Formulae (3) and (4):

$D_{\min} = d_{5,\max} + 2S_{\min}$	(3)

$$D_{\max} = 2d_{\min} - d_{5,\max} + 2S_{\max} \tag{4}$$

Bibliography

- [1] ISO 286-2, Geometrical product specifications (GPS) ISO code system for tolerances on linear sizes Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts
- [2] ISO 883, Indexable hardmetal (carbide) inserts with rounded corners, without fixing hole Dimensions
- [3] ISO 1101, Geometrical product specifications (GPS) Geometrical tolerancing Tolerances of form, orientation, location and run-out
- [4] ISO 1302, Geometrical Product Specifications (GPS) Indication of surface texture in technical product documentation
- [5] ISO 3274, Geometrical Product Specifications (GPS) Surface texture: Profile method Nominal characteristics of contact (stylus) instruments
- [6] ISO 3320, Fluid power systems and components Cylinder bores and piston rod diameters and area ratios Metric series
- [7] ISO 3601-2, Fluid power systems O-rings Part 2: Housing dimensions for general applications
- [8] ISO 4288, Geometrical Product Specifications (GPS) Surface texture: Profile method Rules and procedures for the assessment of surface texture
- [9] ISO 8015, Geometrical product specifications (GPS) Fundamentals Concepts, principles and rules
- [10] ISO 8785, Geometrical Product Specification (GPS) Surface imperfections Terms, definitions and parameters
- [11] ISO 13715, Technical product documentation Edges of undefined shape Indication and dimensioning

Licensed to: Hade, Allison Downloaded: 2023-04-18 Single user licence only, copying and networking prohibited ISO 5597:2018(E)

ICS 23.100.20

Price based on 16 pages

Licensed to: Hade, Allison Downloaded: 2023-04-18 Single user licence only, copying and networking prohibited