The Right Maintenance Strategy is Essential for Achieving Optimal Performance of Pneumatic Actuators

In the next couple of blogs, Jeremy King from Bimba Manufacturing addresses the most difficult challenges facing manufacturers and OEMs as they compete to reach their production targets. With their equipment running at maximum loads, how can they avoid breakdowns in pneumatic components? What are the smartest and most economical approaches available to assure optimal performance? Recent advances in sensor technology make it possible to obtain performance-related data from which more informed decisions can be made about the need to replace failing components. This blog series analyzes the different maintenance strategies for pneumatic actuators and the role sensors can play in each.

As new sensor technologies emerge to monitor the performance of pneumatic actuators, the right maintenance strategy is essential for achieving optimal performance from the equipment. There are three kinds of maintenance strategies to evaluate: corrective maintenance, preventive maintenance and condition-based maintenance. Pressure sensing technology can enhance any one of the three maintenance strategy options.

Corrective Maintenance
Corrective maintenance is the practice of diagnosing and replacing components after they have failed.

Advantages:
• Easy to implement
• Minimal startup costs

Drawbacks:
• Greater long term costs
• Unexpected downtime
• Multiple steps: one to diagnose the problem, a second to repair the equipment
• Difficulties managing repair part inventory

When to use:
A corrective maintenance strategy is effective when the cost of component failure is lower than the cost required to replace the component. To justify the application of a corrective maintenance strategy, all costs must be reviewed. These include: cost of component, value of downtime, labor hours, equipment location, availability of components, and cost of inventory.

Role of sensors:
Corrective maintenance strategies rarely include sensors. Their addition increases the initial cost of the equipment. But, there are two ways that sensors can support a corrective maintenance strategy: as a diagnostic tool and as an indicator of a failure. The most economical way to use diagnostic sensors is by installing them after a component fails. Once the sensor discovers the error, the sensor can be removed. This approach reduces startup costs because one set of sensors can work in multiple places, such as complex pneumatic circuits where symptoms of failure can go unnoticed.

A corrective maintenance strategy can also be enhanced with “intelligent” sensors capable of remote monitoring and alarming. A sensor that sounds an alarm when the system is not working can simplify maintenance, especially for difficult-to-reach locations. Without visiting the machine, the technician will know in advance what parts are required for repair, thus reducing service time.

In next week’s blog Mr. King will continue his discussion with the advantages/drawbacks in preventive maintenance.

 

Subscribe to our mailing list

* indicates required




My company is a…

Recent Posts

Latest Trends in PPI Data for Fluid Power and End-Use Markets

The latest data from the Bureau of Labor Statistics shows the Y/Y % change in fluid power equipment PPI starting to decline. The Y/Y % change appears to have peaked at 14.4% in July 2022, and now sits at 10.4%. The graph below shows this trend over time, and just how large the recent spike…

Read More

NFPA and Triton College Help Illinois Scouts Experience Fluid Power

On Saturday, February 4, 2023, the NFPA teamed up with Triton College, Illinois’ NFPA Fast Track Hub, and BSA’s Pathway to Adventure Council – Portage Creek District, IL, to introduce Scouts (ages 12-14) to fluid power. Triton College hosted the event, which was led by Antigone Sharris, Chair and full-time faculty of Triton’s Engineering Technology…

Read More

Register Now for the Fluid Power Vehicle Challenge Final Competitions and Recruit Talented Students

Registration is now open to NFPA members for the 2023 NFPA Fluid Power Vehicle Challenge final competitions. With the support of NFPA Pascal Society donors, this year’s NFPA Fluid Power Vehicle Challenge program features two separate competitions with a new race at each event, 23 universities, and a lot of excitement. Now is the time for NFPA Foundation…

Read More