Hydraulic Transmissions for Wind Energy

Researchers: Biswaranjan Mohanty, Feng Wang, Mike Gust

PI: Professor Kim A. Stelson

Center for Compact and Efficient Fluid Power
Department of Mechanical Engineering
University of Minnesota

FPIRC, Minneapolis, October 10-12, 2016
Outline

1. Introduction
2. Control of wind turbines
3. Power regenerative wind turbine test platform
4. Future work
5. Conclusions
Opportunity

- Fastest growing green energy source
- 432 GW by 2015, 5% of the global electricity demand
- 74.82 GW by 2015, 5.13% of the U.S. electricity demand
- DOE set goal of 20% of U.S. energy from wind by 2030
- Midsize wind turbines are an attractive but under recognized means to meet this goal
Midsize wind opportunity

Midsize wind (100 kW-1 MW):

- Community wind - cost-effective for farms, communities, factories and rural electric cooperatives.
- Relatively easy permitting process
- Mid-size turbines can operated in local niches, eliminating the need for costly electric power transmission upgrades.
- Distributed wind makes the power grid more stable and reliable.
- Few midsize turbines in the market today
- Commercially hydrostatic units are available in required size.
Conventional wind turbine

- Two or three stages of planetary or parallel shaft gear train
- Three actuators: yaw motor, pitch motor & generator
- Synchronous or asynchronous generator

Two-Stage Planetary with One-Stage Parallel Shaft

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>2.3 - 2.9 MW @ 14 - 16 RPM input speed</td>
</tr>
<tr>
<td>Input Torque</td>
<td>1500 - 1920 kNm</td>
</tr>
<tr>
<td>Ratio</td>
<td>78:1 - 136:1</td>
</tr>
<tr>
<td>Output Shaft Type/Location</td>
<td>Horizontal output shaft located at a 550 mm centerline distance</td>
</tr>
<tr>
<td>Approx. Weight</td>
<td>21,100 kg (46,500 lbs)</td>
</tr>
<tr>
<td>Overall Length</td>
<td>2550 mm</td>
</tr>
</tbody>
</table>
Components reliability

- WindStats Data
 - 5,000 turbines from Denmark, 24,000 from Germany & 1,200 from Sweden
- Electrical system has highest failure rate
- Gear Box has longest downtime per failure
- Drive train repairs are more expensive due to the crane costs.
Potential of HST wind turbine

Performance Objective

- Maximize power capture
- Minimize loads
- Reduce downtime
- Reduce maintenance cost

Hydrostatic transmission (HST):

- Simple system structure
- Continuous variable transmission ratio
- No need of power converter
- All power transmitted through a fluid link; hence less stiff
- Improves reliability and reduce cost
HST wind turbines

1. Windera Power System (Florida)
2. WindSmart (Canada)
3. Mitsubishi Heavy Industry

Mitsubishi 7MW Sea Angel offshore turbine

Core technology: Digital displacement technology by Artemis

93.5% peak efficiency from shaft-to-shaft, and also very efficient in part load too
Conventional wind turbine control

\[P_w = \frac{1}{2} \rho A u^3 \]

Four control regions:
- Region 1: Standby mode
- Region 2: Control to maximize power
- Region 3: Control to rated power
- Region 4: Turbine shut down

- **Rotor power coefficient (Cp)** is the fraction of wind power captured by the rotor:
 \[C_P = \frac{P_r}{P_w} = C_P(\lambda, \beta) \]

- **Rotor tip speed ratio:**
 \[\lambda = \frac{\omega_r R}{u} \]

- According to **Betz Law**, the maximum energy that can be captured by the rotor is **59.3%** of the kinetic energy of the wind.

Conventional wind turbine control in region 2

- **Objective**: Maximize power captured
- **Strategy**: Constant pitch angle β and use τ_g to operate turbine at optimum point

Torque control law - control rotor reaction torque:

$$\tau_g = \tau_c = K \omega_r^2$$

where the gain K is given by blade parameters.

$$K = \frac{1}{2} \rho AR^3 \frac{C_{p_{\text{max}}}}{\lambda_*^3}$$

Dynamics of the rotor

$$\dot{\omega}_r = \frac{1}{2J} \rho AR^3 \omega_r^2 \left(\frac{C_p}{\lambda^3} - \frac{C_{p_{\text{max}}}}{\lambda_*^3} \right)$$

The beauty of the $k\omega^2$ law: bring the turbine to optimal point only with rotor speed and it does not require wind speed information.
HST turbine control in region 2

Control strategy

1. Use rotor speed to generate rotor reaction torque (pump torque) command \((k\omega^2\text{ law})\)
2. Convert pump torque command to line pressure command
3. Track the line pressure by adjusting motor displacement through PI controller

\[p_c = \tau_c \cdot \frac{\eta_p}{D_p} \]

where \(\eta_p\) is the pump mechanical efficiency.

The relationship between the pump torque command and the line pressure command:

- To give accurate control, the pump mechanical efficiency is estimated by previewing the pump efficiency map from the historical rotor speed and line pressure data.

Power regenerative test platform

- To Investigate the performance of hydrostatic transmission
- To test the advanced control algorithm
 1. Capable of simulating a turbine output power of 105 kW
 2. Small electric motor (55kW) to compensate for losses in the components
Power regenerative test platform
Dynamics of the test platform

High Speed Shaft:
\[
\dot{\omega}_g = \frac{1}{J_g} \left[-b_g \omega_g + x D_m P \eta_{mm} + \tau_e - \frac{x_d D_{pd} P_d}{\eta_{mpd}} \right]
\]

HSD
\[
\dot{P}_d = \frac{B_d}{V_d} \left[x_d D_{pd} \omega_g \eta_{vp} - \frac{D_{md} \omega_r}{\eta_{vmd}} \right]
\]

HST
\[
\dot{\omega}_r = \frac{1}{J_r} \left[-b_r \omega_r + \tau_r (\omega_r, u, \beta) - \frac{D_p P}{\eta_{mp}} \right]
\]

Rotor Torque:
\[
\tau_r (\omega_r, u, \beta) = D_{md} P_d \eta_{mmd}
\]

States: \(\omega_g, \omega_r, P, P_d \)
Controller: \(x, \tau_e, x_d \)
Rotor torque simulation

- Aerodynamic torque is a function of pitch angle, rotor speed and wind speed.
- To generate steady state aero dynamic torque (wind velocity is constant), the blade dynamics of the FAST code is used.
- To simulate real dynamics of the rotor of a turbine, the effect of the large blade inertia will be virtually simulated and the modified torque is applied on the rotor of the test platform:
 \[\tau_d = \tau_r - (J_r - J_s)\dot{\omega}_r \]
- Design a controller to track desired torque using HSD circuit.
Short-term energy storage

Energy storage configuration

- **Sensitivity study**: accumulator size on annual energy production (AEP) in a 50 kW turbine:
 - 40 liter accumulator increases AEP by 3.4%
 - 60 liter accumulator increases AEP by 4.1%
- **A cost analysis** is required to determine whether the AEP increase will offset the cost increase of implementing the system.

Future work

- Parameter identification of the test platform. (Ongoing)
- Performance of the HST with standard torque controller.
- Create dynamic model for the effect of unsteady wind and blade pitching from experiments
- Develop a multivariable optimal control strategy to enhance energy capture.
- Investigate the performance of a hybrid drivetrain with a hydraulic accumulator for better energy management.
Conclusions

- Midsize wind is a great opportunity to increase wind resources while preserving stability and reliability of the grid.
- Hydrostatic transmissions are a more cost-effective and reliable solution for midsize wind applications.
- The proposed HST turbine control strategy based on torque control law is applicable to a real world HST turbine.
- Short-term energy storage with a hydraulic accumulator can improve the turbine energy production.
- The power regenerative wind turbine test platform provides a powerful tool to simulate real world HST turbine behavior.
- Further improvements could come from advanced turbine control strategies, more efficient hydraulic transmissions and new hydraulic fluids.
Thank you!

Feng Wang
University of Minnesota

Kim A. Stelson
University of Minnesota

Mike Gust
University of Minnesota

Biswaranjan Mohanty
University of Minnesota