Energy-efficient servohydraulics using a fast reacting variable supply pressure

Can Du, Andrew Plummer, Nigel Johnston

Centre for Power Transmission and Motion Control
University of Bath, UK

www.bath.ac.uk/ptmc
Aim

Hydraulic power supply for mobile servohydraulic systems

Requirements:
• Energy efficient
• Good dynamic response
• Light weight
Introduction

Load prediction: Estimate the minimum P_s (to give maximum valve opening and avoid cavitation)

VPVC system (variable pressure valve-controlled)

A low inertia brushless servo motor and fixed displacement axial piston pump
Outline

• **VPVC Control Algorithm**
 Feed forward
 Feedback

• **Test Rig and Test Information**

• **Simulated and Experimental Results**
 FPVC (fixed supply pressure valve-controlled)
 VPVC (variable supply pressure valve-controlled)

• **Conclusions**
Control Algorithm

1. Calculate the P_S required when valve fully open.
2. Calculate the P_S required avoiding cavitation. (Calculate spool positions)
3. Do the above for two joints: $P_{SO1}, P_{SO2}, P_{SC1}, P_{SC2}$
4. Choose the actuator with largest P_S to be master actuator (MA).
 - Its P_S is the P_S of whole system.
 - Keep its spool position demand (fully open or calculated spool positions)
5. Use the P_S determined last step to calculate the spool position of the other actuator.
6. Use the determined P_S and flow rate requirements to calculate the speed of motor.
Pressure and motor speed feedforward

\[\Delta P_{\text{valve}} 1 = P_S - P_A \]
\[\Delta P_{\text{valve}} 2 = P_B - P_R \]

\[Q_1 = K_V \cdot \sqrt{\Delta P_{\text{valve}} 1} \]
\[Q_2 = K_V \cdot \sqrt{\Delta P_{\text{valve}} 2} \]

\[P_A A_1 - P_B A_2 = F \]

\[P_{SO} = \frac{(A_1^3 + A_2^3) \cdot \nu^2}{A_1 K_V^2} + \frac{F + A_2 P_R}{A_1} \]

\[\frac{d}{dt} \left(\frac{P_S}{K} \right) + \sum_{j=1}^{2} Q_{aj} \]
\[\hat{\omega}_m = \frac{D_P}{D_P} \]
The required force for a given motion is derived, which incorporates inertia and weight related terms.

Feed forward:
From motion demand to both joints:
- Force prediction
- Minimum P_s (aim for one valve fully open but also avoid cavitation)
- Calculate required flows
- Motor speed and spool positions.
Feedback

Use measured cylinder positions to be feedback signals.

1. Motor speed feedback control

\[\ddot{\omega}_m = \ddot{\omega}_m + (K_{P,M} + \frac{K_{I,M}}{s})(\ddot{y}_{MA} - y_{MA}) \text{sgn}(\ddot{x}_{MA}) \]

2. Spool positions feedback control

\[\ddot{x}_j = \ddot{x}_j + (K_{P,S} + \frac{K_{I,S}}{s})(\ddot{y}_j - y_j) \]
Test system

- Robotic Arm
- Tank
- Manifold Block
- 1 Kg Mass
- Motor
- Valves
- Pump
Test system

- Baldor Brushless AC motor BSM63N-375AF: 2.09 Nm continuous, 8.36 Nm peak, 10000 rpm maximum speed;
- Takako micro axial piston pump TFH-315: 3.14 cc/rev, max operating pressure 210 bar, 3000 rpm maximum speed.
- Moog Direct Drive valves D633-R02K01M0NSM2: 5 L/min over 35 bar single path pressure drop.
- Unequal area actuators: 2.01 cm²/1.23 cm²
Test conditions

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Shoulder Demand</th>
<th>Elbow Demand</th>
<th>FPVC Simulation Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Amp_1 = 20^\circ \omega_1 = 3 \text{ rad/s})</td>
<td>(Amp_2 = 20^\circ \omega_2 = 4 \text{ rad/s})</td>
<td>(P_S = 39 \text{ bar,}) Max spool opening is 20%</td>
</tr>
<tr>
<td>2</td>
<td>(Amp_1 = 20^\circ \omega_1 = 4 \text{ rad/s})</td>
<td>(Amp_2 = 20^\circ \omega_2 = 5 \text{ rad/s})</td>
<td>(P_S = 39 \text{ bar,}) Max spool opening is 35%</td>
</tr>
<tr>
<td>3</td>
<td>(Amp_1 = 30^\circ \omega_1 = 4 \text{ rad/s})</td>
<td>(Amp_2 = 30^\circ \omega_2 = 5 \text{ rad/s})</td>
<td>(P_S = 39 \text{ bar,}) Max spool opening is 50%</td>
</tr>
<tr>
<td>4</td>
<td>(Amp_1 = 20^\circ \omega_1 = 7 \text{ rad/s})</td>
<td>(Amp_2 = 30^\circ \omega_2 = 6 \text{ rad/s})</td>
<td>(P_S = 39 \text{ bar,}) Max spool opening is 75%</td>
</tr>
<tr>
<td>5</td>
<td>(Amp_1 = 30^\circ \omega_1 = 7 \text{ rad/s})</td>
<td>(Amp_2 = 30^\circ \omega_2 = 7 \text{ rad/s})</td>
<td>(P_S = 39 \text{ bar,}) Max spool opening is 98%</td>
</tr>
</tbody>
</table>
Fixed pressure results (test 4)
Fixed pressure results (test 4)
VPVC Results

Graphs showing:
- Shoulder position / degree
- Elbow position / degree
- Supply pressure / Bar

Different lines represent:
- Demand
- Simulated
- Experimental
VPVC Results
Power-consumption Comparison

- Power Consumption Comparison

- Power (W):
 - FPVC Sim
 - FPVC Exp
 - VPVC Sim
 - VPVC Exp
 - Saving

- Saving:
 - 73.62%
 - 67.45%
 - 45.47%
 - 33.86%
 - 17.42%
Robustness and on-line parameter estimation

<table>
<thead>
<tr>
<th>COMPARISON OF CONTROLLERS</th>
<th>Predicted Mass - 1.673kg</th>
<th>Online RLS Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max error</td>
<td>Av. Error</td>
</tr>
<tr>
<td>0kg</td>
<td>Shoulder</td>
<td>12.00</td>
</tr>
<tr>
<td></td>
<td>Elbow</td>
<td>12.52</td>
</tr>
<tr>
<td>1.039kg</td>
<td>Shoulder</td>
<td>6.04</td>
</tr>
<tr>
<td></td>
<td>Elbow</td>
<td>5.51</td>
</tr>
<tr>
<td>1.673kg</td>
<td>Shoulder</td>
<td>4.23</td>
</tr>
<tr>
<td></td>
<td>Elbow</td>
<td>4.34</td>
</tr>
</tbody>
</table>

Errors in degrees
Conclusions

• VPVC is an efficient control method for a multi-axis hydraulic actuation system compared with a traditional fixed supply pressure system.
• The dynamic performance of VPVC is good as well, but this is reliant on a highly responsive servomotor.
• Responsiveness also requires force prediction; adaptive force prediction has been demonstrated but only with a load consisting of a variable mass.