Hydraulic Flywheel Accumulator for Mobile Energy Storage

Paul Cronk

University of Minnesota

October 14th, 2015
Outline

I. Overview
 I. Background on Mobile Energy Storage
 II. Hydraulic Flywheel Accumulator Concept
 III. Research Goals and Progress

II. Modeling
 I. Architecture
 II. Hydraulic Losses
 III. Kinetic Losses

III. Prototype and Experimental Setup

IV. Preliminary Experimental Results

V. Future Work
OVERVIEW
Why Hybridize a Powertrain?

- Recapture kinetic energy otherwise dissipated as heat during braking events
- Downsize engine and run at peak efficiency point without compromising vehicle performance
- With “plug-in” capability, utilize cleaner energy sources for vehicle propulsion
Hydraulic vs. Electric Powertrain

<table>
<thead>
<tr>
<th>Component</th>
<th>Hydraulic Powertrain</th>
<th>Electric Powertrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Weight</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Component Cost</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ESS Lifetime</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ESS Power Density</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ESS Energy Storage Density</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Li-Ion Battery Energy Density: 432 $\frac{kJ}{kg}$
Hydraulic Accumulator Energy Density: 6 $\frac{kJ}{kg}$
Pressure vs. SOC

In a traditional accumulator, pressure varies with state-of-charge.

\[E = P_{\text{charge}} V_{\text{charge}} \ln \left(\frac{V_{\text{charge}}}{V_{\text{gas}}} \right) \]
Flywheel-Accumulator Concept

- Rotating Pressure Vessel
- Piston Separates Compressed Gas and Oil
- Torque is applied at the gas side
- Two Energy Storage Domains:
 - Hydro-Pneumatic
 - Rotating Kinetic

\[E = E_{pneumatic} + E_{kinetic} = P_{charge} V_{charge} \ln \left(\frac{P_{max}}{P_{charge}} \right) + \frac{1}{2} I_{max} \omega_{max}^2 \]
Analyzing Fluid Pressure

\[
P(r) = \frac{\rho \omega^2 r^2}{2} + P_s
\]

PS = P_{charge} \left(\frac{V_{\text{charge}}}{V_{\text{gas}}} \right) - \frac{1}{4} \rho \omega^2 r_i^2

Influences on System Pressure:

- Adding Oil Increases Pressure
- Increasing Angular Velocity Decreases Pressure
Flywheel-Accumulator Concept

- Pressure rises as flywheel kinetic energy is extracted
- More pneumatic energy is stored for the same system pressure.
- Less kinetic energy is required to maintain pressure.
- Potential for higher efficiency than a spatially separated combination of flywheel and accumulator

\[P(r) = \frac{\rho \omega^2 r^2}{2} + P_s \]

\[P_s = P_{\text{charge}} \left(\frac{V_{\text{charge}}}{V_{\text{gas}}} \right) - \frac{1}{4} \rho \omega^2 r_i^2 \]
Research Goals

• Specify physically feasible design
• Model performance and optimize design parameters to maximize energy capacity and efficiency
• **Build and test medium energy prototype**
• Refine model and for higher energy levels.
MODELING
Architecture

Steel liner with circumferential composite filament winding
- Composite provides high hoop strength
- Liner ensures piston sealing and alleviates radial tensile stresses in composite

![Diagram of Steel liner with circumferential composite filament winding]
Architecture

- Axial and radial ports in the axle facilitate transport of oil
- The axle, housing, and end caps are radially unconstrained to one another
- Retainers and radial pins provide axial and tangential constraints between components
Hydraulic Losses

• Axle Port Losses

\[\Delta P = \frac{1}{2} \rho_o u^2 \left(\frac{f L}{D} + k \right) \]

• HSRU Leakage

\[\dot{W}_l = P_s \dot{V}_l = \frac{P_s^2 \pi d_s c_s^3}{12 \mu l_s} \]
Kinetic Losses

• Bearing losses
 \[W_b = 2 \omega T_b = \frac{\mu_b(m + m_o) \omega^3 r_{ecc} d_{b,i}}{2} \]

• Aerodynamic drag
 \[W_a = C_m \rho_{ch} \omega^3 r_o^5 \]

• HSRU Viscous Dissipation
 \[W_{vh} = \mu \left(\frac{\partial w}{\partial y} \right)^2 = \frac{\mu \pi d_s^3 l_s \omega^2}{4 c_s} \]

• Pump/Motor losses
 – Use modified McCandlish and Dorey model
 – Assume one set of loss coefficients provides roughly accurate loss estimates for a range of PM sizes

• Spin-Up Losses
Optimization Method

- Multi-Objective Genetic Optimization

<table>
<thead>
<tr>
<th>Geometric</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing inner radius</td>
<td>r_i [cm]</td>
</tr>
<tr>
<td>Housing outer radius</td>
<td>r_o [cm]</td>
</tr>
<tr>
<td>Housing length</td>
<td>l_h [cm]</td>
</tr>
<tr>
<td>Housing liner thickness</td>
<td>th_l [mm]</td>
</tr>
<tr>
<td>Axle port diameter</td>
<td>d_i [mm]</td>
</tr>
<tr>
<td>HSRU seal clearance</td>
<td>c_s [μm]</td>
</tr>
<tr>
<td>HSRU seal length</td>
<td>l_s [mm]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operational</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum angular velocity</td>
<td>ω_{max} [rad/s]</td>
</tr>
<tr>
<td>Charge pressure</td>
<td>P_c [MPa]</td>
</tr>
</tbody>
</table>

Energy density

$$u_d = \frac{E_d}{m + m_{PM,s}}$$

Drive cycle efficiency

$$\eta = 1 - \frac{W_{\text{loss}}}{\int_t |\dot{W}_t| \, dt + W_{\text{loss}}}$$
Selection of a Prototype Design

- Heavy solutions incur high rolling resistance
- Very energy-dense solutions incur high losses
- Minimize W_{dc} and E_d

System mass, $m_{sys} = 39.3$ kg
Energy density, $u_d = 8.77$ kJ/kg
Energy capacity, $E_d = 81.8$ W-h
Mass, excluding PMs = 32.3 kg
Capacity ratio, $R_c = 76.3$
Housing safety factor = 7.35
Storage PM displacement, $D = 0.63$ cc/rev
Packaging volume (approx.) = 48.6 liters
Drive cycle losses, $W_{loss} = 79.2$ kJ
Drive cycle efficiency, $\eta = 86.8\%$
Usage ratio, $R_u = 1.97$
Pressure fraction, $f_{pressure} = 48.0\% (+26.8\%/-21.2\%)$

Diagram shows a graph with E_d (W-h) on the y-axis and u_d (kJ/kg) on the x-axis. The graph includes points indicating Accumulator-like and Flywheel-like performance with respective efficiency (η) values.
PROTOTYPE AND EXPERIMENTAL SETUP
Prototype Components
Chamber and Drive Section
PRELIMINARY
EXPERIMENTAL RESULTS
Flywheel Mechanical Efficiency

Motor Mechanical Efficiency

\[\eta_{m,m} = \frac{T_{flywheel}}{T_{ideal}} = \frac{I_{design} \alpha_{flywheel}}{T_{ideal}} \]

Pump Mechanical Efficiency

\[\eta_{m,p} = \frac{T_{ideal}}{T_{fw}} = \frac{T_{ideal}}{I_{design} \alpha_{flywheel}} \]
Hydraulic Pump/Motor Volumetric Efficiency

\[\eta_v = \frac{\dot{V}_a}{\dot{V}_i} \]

\[\eta_v = \frac{\dot{V}_i}{\dot{V}_a} \]
Rotary Union Leakage

\[W_i = \frac{p_s^2 \pi d_s c_s^3}{12 \mu ol_s} \]
Future Work

• Explore loss mechanisms at higher flywheel speeds
• Explore the effect of fluid spin-up on HFA performance
• Implement the HFA prototype in a simulated drive cycle
• Use validated models to explore benefits of scale
Thank You